首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3353篇
  免费   810篇
  国内免费   1945篇
测绘学   25篇
大气科学   726篇
地球物理   1223篇
地质学   3286篇
海洋学   457篇
天文学   17篇
综合类   161篇
自然地理   213篇
  2024年   13篇
  2023年   59篇
  2022年   116篇
  2021年   150篇
  2020年   196篇
  2019年   220篇
  2018年   191篇
  2017年   141篇
  2016年   223篇
  2015年   210篇
  2014年   243篇
  2013年   324篇
  2012年   284篇
  2011年   304篇
  2010年   289篇
  2009年   295篇
  2008年   248篇
  2007年   305篇
  2006年   290篇
  2005年   224篇
  2004年   213篇
  2003年   199篇
  2002年   141篇
  2001年   148篇
  2000年   152篇
  1999年   133篇
  1998年   115篇
  1997年   121篇
  1996年   106篇
  1995年   98篇
  1994年   80篇
  1993年   73篇
  1992年   47篇
  1991年   35篇
  1990年   35篇
  1989年   24篇
  1988年   20篇
  1987年   11篇
  1986年   8篇
  1985年   4篇
  1984年   9篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1977年   3篇
  1974年   1篇
  1954年   1篇
排序方式: 共有6108条查询结果,搜索用时 250 毫秒
1.
This paper presents the first application of an advanced meshfree method, ie, the edge-based smoothed point interpolation method (ESPIM), in simulation of the coupled hydro-mechanical behaviour of unsaturated porous media. In the proposed technique, the problem domain is spatially discretised using a triangular background mesh, and the polynomial point interpolation method combined with a simple node selection scheme is adopted for creating nodal shape functions. Smoothing domains are formed on top of the background mesh, and a constant smoothed strain, created by applying the smoothing operation over the smoothing domains, is assigned to each smoothing domain. The deformation and flow models are developed based on the equilibrium equation of the mixture, and linear momentum and mass balance equations of the fluid phases, respectively. The effective stress approach is followed to account for the coupling between the flow and deformation models. Further coupling among the phases is captured through a hysteretic soil water retention model that evolves with changes in void ratio. An advanced elastoplastic constitutive model within the context of the bounding surface plasticity theory is employed for predicting the nonlinear behaviour of soil skeleton. Time discretisation is performed by adopting a three-point discretisation method with growing time steps to avoid temporal instabilities. A modified Newton-Raphson framework is designed for dealing with nonlinearities of the discretised system of equations. The performance of the numerical model is examined through a number of numerical examples. The state-of-the-art computational scheme developed is useful for simulation of geotechnical engineering problems involving unsaturated soils.  相似文献   
2.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
3.
PS测井技术是地震勘探方法之一,也是一种简便、快速、准确的原位测试技术。该文介绍了单孔法PS测井的原理及其在铁路工程勘察中的应用,主要包括根据等效剪切波,进行建筑抗震场地类别划分,铁路工程抗震场地类别划分。根据岩土动力学参数,达到评价岩体质量和划分围岩类别目的,利用剪切波速法估算岩土的承载力基本值。通过青岛机场隧道场地的工程实例说明了PS测井技术在岩土工程勘察设计中的应用情况及应用效果。  相似文献   
4.
Flow through rough fractures is investigated numerically in order to assess the validity of the local cubic law for different fracture geometries. Two‐dimensional channels with sinusoidal walls having different geometrical properties defined by the aperture, the amplitude, and the wavelength of the walls' corrugations, the corrugations asymmetry, and the phase shift between the two walls are considered to represent different fracture geometries. First, it is analytically shown that the hydraulic aperture clearly deviates from the mean aperture when the walls' roughness, the phase shift, and/or the asymmetry between the fracture walls are relatively high. The continuity and the Navier–Stokes equations are then solved by means of the finite element method and the numerical solutions compared to the theoretical predictions of the local cubic law. Reynolds numbers ranging from 0.066 to 66.66 are investigated so as to focus more particularly on the effect of flow inertial effects on the validity of the local cubic law. For low Reynolds number, typically less than 15, the local cubic law properly describes the fracture flow, especially when the fracture walls have small corrugation amplitudes. For Reynolds numbers higher than 15, the local cubic law is valid under the conditions that the fracture presents a low aspect ratio, small corrugation amplitudes, and a moderate phase lag between its walls.  相似文献   
5.
A formula for the thickness of a shear band formed in saturated soils under a simple shear or a combined stress state has been proposed. It is shown that the shear band thickness is dependent on the pore pressure properties of the material and the dilatancy rate, but is independent of the details of the combined stress state. This is in accordance with some separate experimental observations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy–Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
Experimental results are presented from the extensive program of drained plane strain compression tests on sand carried out in Grenoble over the last two decades. Systematic analysis of photographs of the deforming specimen allowed for measuring deformations and determining strain fields throughout the test, that is: prior to, at, and after the onset of strain localization. The principles, details and accuracy of the procedure are described, as well as its suitability to properly depict the patterns of deformation. Findings concerning the occurrence and progression of strain localization are discussed. The issues of shear band orientation and thickness are addressed, as well as temporary and persistent complex localization patterns, and the volumetric behaviour inside a band after its formation. The influence of such variables as initial state of the sand (effective stress and relative density), specimen size and slenderness, as well as grain size, is discussed. Copyright © 2004 John Wiley & Sons, Ltd  相似文献   
8.
Tidal effects on temperature front in the Yellow Sea   总被引:5,自引:0,他引:5  
Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring, thrives in summer, and fades in autumn as thermocline declines. TF intensity ⋎S T ⋎ is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   
9.
IntroductionThe area of eastern Liaoning is an importantmetal and nonmetal metallogenetic district in China,and the Liaohe group is one of the most importantstrata that hosts Pb, Zn, Au, B and Mg etcstratabound deposits. Up to now many geo1ogistssuch as Z…  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号